Four-Component Relativistic Density-Functional Theory Calculations of Nuclear Spin-Rotation Constants: Relativistic Effects in p-Block Hydrides.

نویسندگان

  • Stanislav Komorovsky
  • Michal Repisky
  • Elena Malkin
  • Taye B Demissie
  • Kenneth Ruud
چکیده

We present an implementation of the nuclear spin-rotation (SR) constants based on the relativistic four-component Dirac-Coulomb Hamiltonian. This formalism has been implemented in the framework of the Hartree-Fock and Kohn-Sham theory, allowing assessment of both pure and hybrid exchange-correlation functionals. In the density-functional theory (DFT) implementation of the response equations, a noncollinear generalized gradient approximation (GGA) has been used. The present approach enforces a restricted kinetic balance condition for the small-component basis at the integral level, leading to very efficient calculations of the property. We apply the methodology to study relativistic effects on the spin-rotation constants by performing calculations on XHn (n = 1-4) for all elements X in the p-block of the periodic table and comparing the effects of relativity on the nuclear SR tensors to that observed for the nuclear magnetic shielding tensors. Correlation effects as described by the density-functional theory are shown to be significant for the spin-rotation constants, whereas the differences between the use of GGA and hybrid density functionals are much smaller. Our calculated relativistic spin-rotation constants at the DFT level of theory are only in fair agreement with available experimental data. It is shown that the scaling of the relativistic effects for the spin-rotation constants (varying between Z(3.8) and Z(4.5)) is as strong as for the chemical shieldings but with a much smaller prefactor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Absolute NMR shielding scales and nuclear spin-rotation constants in (175)LuX and (197)AuX (X = (19)F, (35)Cl, (79)Br and (127)I).

We present nuclear spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants, and shielding spans of all the nuclei in (175)LuX and (197)AuX (X = (19)F, (35)Cl, (79)Br, (127)I), calculated using coupled-cluster singles-and-doubles with a perturbative triples (CCSD(T)) correction theory, four-component relativistic density functional theory (relativistic DFT), and no...

متن کامل

Ab initio and relativistic DFT study of spin-rotation and NMR shielding constants in XF₆ molecules, X = S, Se, Te, Mo, and W.

We present an analysis of the spin-rotation and absolute shielding constants of XF6 molecules (X = S, Se, Te, Mo, W) based on ab initio coupled cluster and four-component relativistic density-functional theory (DFT) calculations. The results show that the relativistic contributions to the spin-rotation and shielding constants are large both for the heavy elements as well as for the fluorine nuc...

متن کامل

Elastic constants and their variation by pressure in the cubic PbTiO3 compound using IRelast computational package within the density functional theory

p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; text-align: justify; font: 12.0px 'Times New Roman'} span.s1 {font: 12.0px 'B Nazanin'} p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; text-align: justify; font: 12.0px 'Times New Roman'} span.s1 {font: 12.0px 'B Nazanin'} In this paper, we study the structural and electronic properties of the cubic PbTiO3 compound by using the density functional the...

متن کامل

Density functional calculations of nuclear quadrupole coupling constants in the zero-order regular approximation for relativistic effects

The zeroth-order regular approximation ~ZORA! is used for the evaluation of the electric field gradient, and hence nuclear quadrupole coupling constants, in some closed shell molecules. It is shown that for valence orbitals the ZORA-4 electron density, which includes a small component density ~‘‘picture-change correction’’!, very accurately agrees with the Dirac electron density. For hydrogen-l...

متن کامل

Effect of rotation and vibration on nuclear magnetic resonance chemical shifts: Density functional theory calculations

The effect of rotation and vibration on the nuclear magnetic resonance ~NMR! shielding constants was computed for HF, F2, N2, CO, and HBr. The shielding constants for H, C, N, O, and F nuclei were calculated using sum-over-states density functional perturbation theory ~SOS-DFPT!. Diatomic ro-vibrational states were calculated from a discrete variable representation using Morse potentials and po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chemical theory and computation

دوره 11 8  شماره 

صفحات  -

تاریخ انتشار 2015